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The solution is presented for the temperature fields at the wall and in
the laminar gas stream. The system is steady-state, and the heat flux
to the wall is constant,

Reference [1] has reported an investigation of the
temperature field with laminar flow of a gas between
parallel flat walls allowing for the heat arising from
internal friction and from work done by pressure
forces. The wall is assumed to be thermally thin.

In some situations the heat due to internal friction
and pressure forces may be neglected, but the two-
dimensional nature of the wall must be taken into ac-
count. :

The present paper gives a solution to the problem
of computing the temperature field with laminar flow
of a gas between parallel walls. The problem postu-
lated is illustrated in Fig. 1.

The problem has been solved under the following

premises: a) the temperature profile at the entrance
is uniform; b) the velocity profile at the entrance is
parabolic; ¢) the physical properties of the gas and of
the wall materials are independent of temperature;
d we neglect thermal conduction of the gas along the
streamwise direction; e} we neglect friction heating;
f) the channel is quite wide; g the heat flux to the in-
side of the walls is constant.

In view of the symmetry we shall consider only one
half of the channel.

For the wall we have the equation
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In view of conditions b), ¢), d) and f), the energy equa-
tion for the gas stream has the form
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Fig. 1. Schematic of the problem.

The solution of the second boundary value problem for
a rectangle has been given in [2] and may be written
in the form

T. =

w

(w,shi,y +
1

iAok

+Pnch ), y)cos Ay X - (ag g + Bo)- (3)

Differentiating (3) and substituting into the boundary
conditions, we have, on the side y = b + ¢ of the rec-
tangle
oy =—g/k, for n=0, (4)
Mohglasch dy (b +c)+B,shd, (b +0)]=0
for n=1,2,3, ... (5)

On the side y = b, taking the function f(x) as known and
expanding it in a Fourier series, we obtain

@y = —f/2h,, for n=0, (6)
‘%w}"n(anCh;\'nb"‘anh}‘nb)=fn
for n=1, 2, 3, ... {7

From (4 and (6) we find
fo = 2‘7-
Solving (5) and (7) we find
fa_ shr(+0)
A Ay shi,c

fn chd (b +0)
Ayhy shi,c

Op = —

3

ﬂn =

Substituting the values of ag, ay, By into (3) we obtain

T, =f——— y+

}“W
1 v _
+— EfnL chdnbtec—y) cos A, x. (8)
hy = Ay shh,c
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Fig. 2. Comparison of the
results of calculation of
wall temperatures with ex-
perimental data: 1) for K, =
=1.79-10° and K, = 2.84

£ 10-2; 2) 1.45 10° and
2.44+107%; 3) 2.22 + 10° and
5.80*107%; 4) 1.21- 10° and
5.58+ 107%; 5) 1.11- 10° and

7.42 - 107%,

We shall seek a solution of the energy equation (2} in
the form
T= 0, () +0(x, v), (9

where ¢p(x) is the gas temperature aty = b.
Differentiating (9) and substituting the result into
(2) we obtain
’ox, y)
dy? n

_ _ ¥ \[08(x y) 30,(x)
K (1) [ Re . 28 | wo

with the boundary conditions

ﬂ(x, y)zTo—“eb(O) for x = (O
M =0 for y:O;
dy
0(x, y)=0 for y=10.

Without a prior assumption that the function Tg is
continuous at the point (0, b), we may write

T4 (0, b)—0,(0) = AT 0.

We shall seek the function 6(x,y) as the series

o

0(x,9) =3, P,(x)V,(»), (11)

n=t

where V(y) are eigenfunctions of the boundary value
problem.

Valy) + v Ky (1 — g¥63) V, (4) = 0,
Va(0) =0, V,(8) =0. (12)
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Using (11) and (12), and dividing by K,(1 — y2AD), we
obtain

]

Zx 1Pr(®) +VEP, NV, (y) + 85 (%) =0.  (13)

We expand unity in a series with respect to the eigen-
functions Vy(y):

©

1=Y ¢V,

n=I1

Then

0

¥ 1P () 42 Pa(0) + 6,05 (1) V() = 0. (14)

n=1

The solution of the differential equation in the brack-

" ets under the initial conditions

0(x, y) =AT for x =0,

Y POVa) =AT =Y ATeV, (@)
n=i n=1
P,(0)=AT,,
has the form
P,(x) =ATc, x

x

X exp —vfx——cnj exp — v x—E)9; (B) d E. (15)
0
Substituting (15) into (11) and then {9), we obtain

Ty =8, (x) + Z Cy [ATexp—v,%xf

=1
— [exp—v2x—D0,©dE|Va). (10
0

MATCHING CONDITIONS

At the gas-wall boundary we have

aTg aT
Tg=T,, A = LA
8 w g dy Yo oy
Using (8) and (6) we obtain
8y() = — —1— b6+, +
}VW

+ 1 an (;-}-»1— cthxnc) cos A, X,

?”w n=1 n

F= —lgz ¢, {A Texp—vix—
n=|
—fep—nzx—pg, @) v,). (D
0

Differentiating the first equation of (17) and substitut-
ing it into the second, and replacing n by k, we obtain

! 2 f.cthd, cx

A

F) +hg 3y 6V, (B) AT exp—~2x + -
n=1

xj‘exp——v;-:(x-—g)sinkkgdg]:O. (18)
Q9
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Todetermine the unknown quantities AT, fy, f;, ...,
Jn we shall set up a system of equations, for which we
shall multiply (18) by 1, cos A%, cos XX, ..., cos ApX
and integrate over the range (0,7). Because of the or-
thogonality we obtain

gl +AT [xg PIAAC ﬂ#] n
vﬂ
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withm=1, 2, 3, ... .

Putting 7= y/b in (12), we obtain

Q.(0)=0, Q,(1)=0,
u2 =925k, 21

Qn+pa(l —19Q, =0,
Vn (y) = Qn (T)’

The eigenfunctions of the boundary problem (21) in the
interval (0, 1) are orthogonal and are normalized with
weight (1 — 79):
1
Qu @l = | 1 —19Q @ QW dT =6, (22)

0

We shall expand unity in a series with respect to
eigenfunctions Qu(7):

1=Y Q0.
n==1

where
1

=] 1 =™, @dr. (29)
Q0

Integrating {(21) and taking intc account that Q;I(O) =
=0, we find
1

pe § 0 —Q@de = —p,
(]
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Since
, 1
Valy) = o Qn (1),
then
eV (b) = —c, ub. (24)
In addition we have that
yoe-2 (25)
=1 3

Substituting the values of (24) and (25) into (19) and (20),
and designating ayi = l/lazK1 7\%{ , we obtain an infinite
system of equations with respect to AT, fj:
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{\3 — =0 Z L +agp, 1}
- (26)
?ygbK1
for m = 0;
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form=1, 2, 3,

The system of Egs. (26) and (27) was limited to
m < 30 and was solved on a BESM-2M computer.

Tests were conducted by the author in plane-slotted
channels of height 2b = 0.2, 0.4 and 0.8 mm, relative
width d/dg = 25, and relative length [/de = 125.

The channel walls were made of materials with
thermal conductivity ranging from 1 to 390 W/m - deg,

The results of the calculations are shown in Fig. 2
as the solid lines, the experimental data being the
points.

The wall temperature at the section entrance dif-
fered from that of the gas both in the experiments and
in the calculations.
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NOTATION

2b is the distance between the walls; ¢ is the wall
thickness; I is the channe! length; x/I is the relative
channel length; d is the width of the experimental chan-
nel; de is the equivalent diameter; dg = 4b; Tg is the
gas temperature; Ty is the gas temperature at the en-
trance; Ty is the wall temperature; & is the dimen-
sionless wall temperature, $ = (Tw — T'ATw ~ Tp);
Ag is the thermal conductivity of the gas; Aw is the
thermal conductivity of the wall; uy is the gas veloc~
ity; um is the mean velocity of the gas in the channel;
cp is the specific heat of the gas; p is the gas density;
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g is the specific heat flux; K; =8/8) (1/b) RePr; K, =
= g./7\w§ Re = 4 umpbh; Pr= cpu/xg.
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