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The solution is presented for the temperature fields at the wall and in 
the laminar gas stream. The system is steady-state, and the heat flux 
to the wall is constant. 

Reference [i] has reported an investigation of the 

temperature field with laminar flow of a gas between 

parallel flat walls allowing for the heat arising from 
internal friction and from work done by pressure 

forces. The wall is assumed to be thermally thin. 

In some situations the heat due to internal friction 

and pressure forces may be neglected, but the two- 

dimensional nature of the wall must be taken into ac- 

count. 
The present paper gives a solution to the problem 

of computing the t e m p e r a t u r e  field with l a m i n a r  flow 
of a gas between p a r a l l e l  walIs .  The p rob lem postu-  
lated is  i l l u s t r a t ed  in Fig .  1. 

The p rob lem has been solved under  the following 
p r emi se s :  a) the t e m p e r a t u r e  prof i le  at the en t r ance  
is un i fo rm;  b) the veloci ty  prof i le  at the en t r ance  is  
parabol ic ;  c) the phys ica l  p rope r t i e s  of the gas and of 
the wall  m a t e r i a l s  a re  independent  of t e m p e r a t u r e ;  
d) we neglec t  t h e r m a l  conduction of the gas along the 
s t r e a m w i s e  d i rec t ion;  e) we neglec t  f r ic t ion  heat ing;  
fl the channel  is  quite wide; g) the heat  flux to the in -  
s ide of the walls  is  cons tant .  

In  view of the s y m m e t r y  we shal l  cons ider  only one 
half of the channel .  

For the wall we have the equation 

O~Tw .q_ o!r  w. = 0 (1) 
Ox 2 Oy ~ 

with boundary  condi t ions  

q = - -  ;~w . . . . .  OTw =cons t  for y = b + c ;  
Oy 

OTw _ 0  for x = O ,  x = l ;  
Ox 

[ ( x ) = - - ~ w  OTw for y = b .  
Oy 

In view of condit ions ]3), c), d) and i), the energy  equa-  
t ion for the gas s t r e a m  has the fo rm 

)~r 02Tg OTg (2) 
- OY ~" - = cp  p u .  O x  ' 

with boundary  condit ions 

Tg = T O x = 0; 

OTg _ 0 y = 0; 
Oy 

f o r  

for 

OTg 
[ ( x ) = - - ~ g  for y = b .  

Oy 

Fig. i. Schematic of the problem. 

The solution of the second boundary value problem for 
a rectangle has been given in [2] and may be written 

in the form 

T w = - ~  ( % s h ~ g - ?  

+ ~n ch ~'nY) COS)~n x @ (%Y ~- ~o)" (3) 

Differentiating (3) and substituting into the boundary 

conditions, we have, on the side y = b + c of the rec- 

tangle 

% = - -  ql~, w for n = 0, (4) 

~w~n [an ch ~ (b + c) + gn sh ~n (b + c)] = 0 

for n = 1, 2, 3 . . . .  (5) 

On the s ide y = b, taking the fune t ionf (x )  as known and 
expanding i t  in a F o u r i e r  s e r i e s ,  we obtain 

%=-- fo /2~ ,w for n = 0 ,  (6) 

- -  ~'w ~'n (an ch ~,n b + [~n sh 7,n b) = fn 

for n = 1, 2, 3 . . . .  (7) 

F r o m  (4) and (6) we find 

fo = 2q. 

Solving (5) and (7) we find 

]:n sh ~,~ (b + c) 

~.w~n sh )~, c 

[~n= fn chXn (b + c) 

Lw~, n sh )~, c 

Subst i tu t ing the va lues  of a0, a n, fin into (3) we obtain 

r = [3o- -  ~ q  y +  
w )~w 

1 1 ch)~,(b + c - - y )  
-- cos )~n x. (8) 

+ "  %w f" kn shknc 
n=l 
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Fig.  2. Compar i son  of the 
r e s u l t s  of ca lcula t ion  of 
wall  t e m p e r a t u r e s  with ex -  
p e r i m e n t a l  data: 1) for K 1 = 
= 1.79 - 105 and K z = 2.84 �9 
�9 10-2; 2) 1.45.  10 ~ and 
2.44" 10-3; 3) 2.22 �9 10 ~ and 
5.80" 10-a; 4) 1.21.  10 ~ and 
5.58" 10-4; 5) i.ii. 106 and 

7.42- 10 -5 . 

We shall seek a solution of the energy equation (2) in 
the form 

T , =  0o (x) + O (x, y), (9) 

where 0b(X) is the gas temperature at y = b. 

Differentiating (9) and substituting the result into 
(2) we obtain 

0 ~ 0 (x, V) 
Oy ~ 

with the boundary conditions 

0 (x, y) = T O - -  0b (0) for  x = 0; 

O0(x, Y) = 0  for  y = 0 ;  
oy 

0(x, y ) = 0  for y = b .  

Without a p r i o r  a ssumpt ion  that the function Tg is 
cont inuous at  the point (0, b), we may wr i te  

Tg (0, b) - -  Ob (o) ~ a T 4~ o. 

We shal l  seek the funct ion 0 ( x , y ) a s  the s e r i e s  

0 (x, y) = E P .  (x) Vn (y), (11) 

where  V(y) a re  e igenfunct ions  of the boundary  value 
p r o b l e m  

V: (y) + ~ K, (I - -  y'/b ~) V~ (y) = O, 

v:  (o) = o, v,, (b) = O. (12) 
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Using (11) and (12), and dividing by KI(1 - ya/bZ), we 
obtain 

IPs (x) + ,,. P. (x)l u .  (y) + o; (x) = o. (13) 
n= l  

We expand unity in a s e r i e s  with r e spec t  to the e igen-  
funct ions Vn(Y) : 

Then 

1 -= c.V~ (!t)- 
n = l  

oo 

E [P: (x) -t-V2n Pn (x) -t- c~ O'b (x) ]  V. (y)  = O. (14)  
n = l  

The solut ion of the d i f fe rent ia l  equation in  the b raek -  
�9 ets  under  the in i t i a l  condi t ions  

O(x, y ) = A T  for x = 0 ,  

P, (o) v .  (y) = a r =_ a rc~176 
t t = I  t ~ = l  

Pn(O) =ATcn, 

has the form 

Pa(x)=hTc~ x 
x 

x exp 2 j ---vf~x--c n exp - -  ~(x--~)0g (~) d ~. (15) 
0 

Substituting (15) into (11) and then (9), we obtain 

r 

T g = 0 b ( x ) + X  cn[kT~xp--v~nx: - 

- ] v . (y) ,  t16) 
0 

MATCHING CONDITIONS 

At the gas-wall boundary we have 

Tg=Tw, ag 0Tg =Xw .OTw. 
Oy Oy 

Using (8) and (6) we obtain 

0b(x)-  q b + 6 o +  
kw 

/ (x) = -- Zg =~ 

(17t 
0 

Diffe ren t ia t ing  the f i r s t  equation of (17) and subs t i tu t -  
ing i t  into the second, and r ep lac ing  n by k, we obtain 

1 f (x) + ~,g ~ c,V" n (b) [A Texp 2 v x + -  fk cthXk c• 
n ~ l  ~W k=l  

• ~ exp -- ~ (x -- [) sin ~., ~ d ~] = 0. 
0 

(18) 
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To determine the unknown quantities AT, f l ,  fX ..... 
fn we shall set up a system of equations, for which we 
shall multiply (18) by i, cos Xlx, cos Zxx, ..., cos;tnX 

and integrate over the range (0, l). Because of the or- 
thogonality we obtain 

ql+hT[)~g~c,,V'(b) 1--exp --v~ l] 

n ~ l  n J 

+' g~ f~ cth X~ c v~ + ~.~ ;% 
k.=l = 

+ [ ~  ;LkcnV~(b) ] ~nn ] = 0  

+ 

(19) 

for m = 0, and 

T :,~+AT X, 
~ cov~ (~) 

~2 + ~ [1 - - ( - -  1) m exp--~l]} + 

2 

x [ 1 - -  ( - -1)~+.  m] +Xt" ~ + ~  v~ 2 
% .+kin 

x [1--(--  1)~ exp--v~ 1]} +fm(K~ cth X~c) x 

2 [t - -  (-- 1) ~ exp --v~ l]~ 
• ~n = 0 (20)  

with m = i, 2, 3, .... 

Putting ~ = y/b in (12), we obtain 

Q~ + t~] (1 ~-x~)Q~ = O, Q:(O) = o, Q.(1) = O. 

2 2 V.(y)=O~('O, ~ = %  b/q .  (21) 

The eigenfunctions of the boundary problem (21) in the 
interval  (0, 1) are  orthogonal and are  normal ized  with 
weight (1 - ~.2): 

1 

[Qn, Q,n] = S (1 --.~)Qn(.OQm(x)d.c=fn.,. (22) 
0 

We shall  expand unity in a se r ies  with respec t  to 
eigenfunctions Qn(~') : 

1 =- ~ c,,Q. ('0, 

where 
l 

Cn = ; (1 --  ~) Q. (~) d w. (23) 
0 

Integrat ing (21) and talcing into account that  Qn(O) = 
= O, we find 

1 

"~ S (l--x2)Qn(':)d'~= 2c - - ~ L  n n '  
0 

Since 

1 
V~ (V) = y O: (~), 

then 
2 c,,y~ (b) = - c~ ~n/o. 

In addition we have that 

(24) 

~c 2= 2 (25) 
n = l  /z 3 " 

Substituting the values of (24) and (25) into (19) and (20), 
and designating ak  = 1/b2K1 X~ , we obtain an infinite 
sys tem of equations with respec t  to AT, fn: 

AT ( 2  ~ c~exp_~2 / ) + !  1 ~ fk cthk~------~c X 

x -~  [1-- ( - - l )k]+ 1 +akl~ ] 

_ q l  (26)  
xgbK~ 

for m = O; 

~2 ~ [1 -- (-- 1)~ exp - ~ 2 l  

r t~ l  

+ 

, k =  1 

1 c 2 a k ~  1- - ( - -1 )~exp- -  zl  
+--~ -  " 1 + ak~ 1 +amy. ~ j ~ra = 

+ :,,, { K1Kzb cth ~.,~c ~ : 
t ~m n 1 + a m ~t~ 4 

• 1 - - ( - -  1)ra exp--'..,] l 1 
1 + a,,, ~ 

I =0 ,27, - - K 2  2b ~.~ = I +am~L,4 - -  

for m =  I,  2, 3, . . . .  

The system of Eqs~ (26) and (27) was limited to 

m < 30 and was solved on a BESM-2M computer. 

Tests were conducted by the author in plane-slotted 

channels of height 2b = 0.2, 0.4 and 0.8 ram, relative 

width d/d e = 25, and relative length//d e = 125. 

The channel walls were made of materials with 
thermal conductivity ranging from I to 390 W/m - deg, 

The results of the calculations are shown in Fig. 2 

as the solid lines, the experimental data being the 

points. 

The wall temperature at the section entrance dif- 

fered from that of the gas both in the experiments and 

in the calculations. 
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NOTATION 

2b is the d i s tance  between the wai ls ;  e is the wall 
th ickness ;  l is  the channel length; x/l i s  the r e l a t i v e  
channel length; d is the width of the expe r imen ta l  chan-  
nel ;  de is the equivalent  d i a m e t e r ;  d e = 4b; Tg is the 
gas t e m p e r a t u r e ;  T o is the gas t e m p e r a t u r e  at the en- 
t r ance ;  T w is the wall  t e m p e r a t u r e ;  ~ is the d imen-  
s ion le s s  wall t e m p e r a t u r e ,  ~ = (Tw - T)/(Tw -To); 
kg is the t h e r m a l  conduct ivi ty  of the gas;  Xw is  the 
t h e r m a l  conduct ivi ty  of the wall;  ux is  the gas ve loc -  
ity; Um is the mean velocity of the gas in the channel; 
Cp is the specific heat of the gas; p is the gas density; 

cl is  the spec i f i c  hea t  flux; K 1 =(3/8) ( 1 / b ) R e P r ;  K z = 

= kg,/kw; Re  = 4 umPb/t~ ; P r  = Cp~/kg. 
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